Exponents, Roots and Logarithms

<u>Exponents</u>, Roots (such as <u>square roots</u>, cube roots etc) and <u>Logarithms</u> are all related!

Let's start with the simple example of $3 \times 3 = 9$:

$$3 \text{ Squared} = = 3 \times 3 = 9$$

Using Exponents we write it as:

$$3^2 = 9$$

When any of those values are missing, we have a question. And (sadly) a **different notation**:

$$3^2 = ?$$

is the exponent question "what is 3 squared?": $3^2 = 9$

$$?^2 = 9$$

is the <u>root</u> question "what is the square root of 9?": $\sqrt{9} = 3$

$$3^? = 9$$

is the <u>logarithm</u> question "what is log base 3 of 9?": $log_3(9) = 2$

So when you are stuck trying to solve questions with logs, roots or exponents just remember that!

One more example:

$$10^3 = 1000$$

$$10^3 = ?$$

"What is 10 cubed?": $10^3 = 1000$

$$?^3 = 1000$$

"What is the cube root of 1000?": $\sqrt[3]{1000} = 10$

$$10^? = 1000$$

"What is log base 10 of 1000?": $log_{10}(1000) = 3$

Squares and Square Roots (A)

Instructions: Find the square root or square of each integer.

$$\sqrt{256} =$$

$$\sqrt{4} =$$

$$\sqrt{169} =$$

$$\sqrt{100} =$$

$$\sqrt{16} =$$

$$\sqrt{9} =$$

$$\sqrt{49} =$$

$$\sqrt{144} =$$

$$\sqrt{225} =$$

$$\sqrt{25} =$$

$$11^2 =$$

$$13^2 =$$

$$3^2 =$$

$$4^2 =$$

$$7^2 =$$

$$5^2 =$$

