PYTHAGORAS' THEOREM

Over 2000 years ago there was an amazing discovery about triangles:

When a triangle has a right angle (90°) ...

... and squares are made on each of the three sides, ...

Go

... then the biggest square has the **exact same area** as the other two squares put together!

It is called "Pythagoras' Theorem" and can be written in one short equation:

$$a^2 + b^2 = c^2$$

Note:

- c is the longest side of the triangle
- a and b are the other two sides

Definition

The longest side of the triangle is called the "hypotenuse", so the formal definition is:

In a right angled triangle: the square of the hypotenuse is equal to the sum of the squares of the other two sides.

 $a^2 + b^2 - c^2$

Example: Solve this triangle

Start with: $a^2 + b^2 = c^2$

Put in what we know: $5^2 + 12^2 = c^2$

Calculate squares: $25 + 144 = c^2$ $25+144=169:169 = c^2$

Swap sides: $c^2 = 169$

Square root of both sides: $c = \sqrt{169}$

Calculate: c = 13

when the three sides of a triangle make $a^2 + b^2 = c^2$, then the triangle is right angled.

Example: Does this triangle have a Right Angle?

Does $a^2 + b^2 = c^2$?

•
$$a^2 + b^2 = 10^2 + 24^2 = 100 + 576 = 676$$

•
$$c^2 = 26^2 = 676$$

They are equal, so ...

Yes, it does have a Right Angle!

Pythagorean Theorem (A)

Name:

Date:

Calculate the missing side measurement using $a^2+b^2=c^2$.

1.

2.

3.

4.

5.

6.

Pythagorean Theorem (A)

Name:

Date:

Calculate the missing side measurement using $a^2 + b^2 = c^2$.

1.

2.

3.

4.

5.

6.

Pythagorean	Theorem	(A)
, Junagor Dan	I II COI CIII	()

Name:

Date:

Calculate the missing side measurement using $a^2 + b^2 = c^2$.

1.

2.

3.

4.

5.

6

